
Verification of Neural Nets: Towards Deterministic
Guarantees

Hussein Sibai
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 15213

sibai2@illinois.edu

Abstract

The success of neural networks in different classification and regression tasks
encouraged different researchers and companies to incorporate them in safety-
critical systems such as autonomous vehicles. Because stochastic guarantees are
not enough to ensure safety in these settings, the formal methods started to develop
methods and tools to formally verify properties of these neural nets. This report is
a summary of the recent paper “Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks” by Katz et al. The authors present an extension of the
Simplex method to formally verify or falsify properties of Rectified Linear Unit
(ReLU) based networks. They used it to verify some interesting properties of a
prototype deep neural network implementation of the next-generation Airborne
Collision Avoidance System for unmanned aircraft (ACAS Xu).

1 Introduction

Deep neural networks have shown a lot of success in accomplishing challenging tasks such as image
classification, speech recognition and game playing. They are trained on a finite set of the input space,
called the training set, and are expected to generalize, i.e. result in a correct answer even for new
data that was not part of the training dataset. Their popularity comes from the fact that they met this
expectation for random input data in many important tasks. However, it has been shown [5] that a
carefully chosen small perturbation of the input could cause a network to result in a different answer.
For example, one can add adversarial noise with small norm to an image that would not normally
change its class from a human perspective, while changing it from the network one. This raises safety
concerns especially when these networks are incorporated in safety-critical systems. It also motivates
the need for methods and tools to verify specific properties of neural nets. Actually, it is an instance
of a model checking problem, the model here being the neural net. And, there is a mature field of
research about model checking and theorem proving which provide tools and methods that may be
useful in our situation.

Checking even simple properties of ReLU-based networks is NP-complete as proved in Appendix A
of the paper by the reduction to the SAT problem. The difficulty of verification is caused by the ReLU
nonlinear activation units which makes the problem nonconvex. A neural netowrk network is a stack
of layers each containing a set of nodes. The output of a node is the value of a nonlinear activation
function applied to a linear combination of the outputs of the nodes of the previous layer. The input
is fed to the first layer and the output of the network is the output of the last layer. In the paper, they
consider networks where ReLU is the only nonlinear activation unit allowed. ReLU is a function
that maps a real number x to zero if it is negative (inactive case) and to itself otherwise (active case).
These type of networks are used widely in the machine learning community. Their piecewise linearity
is believed to be a cause for their good generalization abilities. Also, this piecewise linearity makes

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



them only one step away from being instances of a linear programming problem where one wants to
check the satisfiability of a conjunction of linear inequalities.

Satisfiability Modulo Theories (SMT) solvers and linear programming solvers are tools used in the
model checking and optimization communities respectively to check the satisfiability of properties
written in some theory. A natural thing to do is to try to use these solvers to verify properties of
neural nets as a black box without utilizing the structure of the neural nets. In [4], the authors tried
that approach while linearizing the sigmoid activation function, but the largest network they were
able to verify is with only one hidden layer and 20 hidden units. So, a more scalable approach that
utilizes the structure inherent in the neural network is needed. Katz et al. in [3] extended the Simplex
method with few rules to handle constraints that include ReLU activation units. The worst case
time complexity is still exponential in the number of nodes because of the NP-completeness of the
problem. However, their heuristic helps in eliminating large branches of the search tree. They showed
the effectiveness of their tool by verifying several interesting safety and robustness properties of a
prototype DNN implementation of Airborne Collision Avoidance System for Unmanned Aircraft
(ACAS Xu).

2 Background

2.1 Neural Networks

A neural network is a stack of layers. The first layer is the input layer and the last one is the output
layer. The layers between the input and the output are called hidden layers. Each one consists of a
set of nodes. Each of these nodes takes as input a linear combination of the output of the nodes in
the previous layer to which it applies a nonlinear activation function. In the case of the paper under
consideration, this nonlinear function is always a ReLU. Formally, ReLU maps any real number x
to max(0, x). Thus, the output of a node is the output of the ReLU when applied to the dot product
between a weight vector and the output of the previous layer plus some bias term. They denote the
number of layers (including the input and the output layers) by n, the input layer by Layer 1, the
output layer by Layer n, the size (number of nodes) of the ith layer by si, the output of the jth node
in the ith layer by vi,j , the column vector [vi,1, . . . , vi,si ]

T by Vi, the si × si−1 weight matrix of the
ith layer (where 2 ≤ i ≤ n) by Wi and its bias vector by Bi. Therefore, the output of the ith layer Vi
is equal to ReLU(WiVi−1 +Bi), where ReLU is applied element-wise. The weight matrices Wi’s
and bias vectors Bi are the result of an optimization algorithm applied to a finite data set called the
training data set. For any new data point, the input is fed to Layer 1, then propagated through the
network to the output layer.

2.2 Satisfiability Modulo Theories (SMT)

A theory T is a pair 〈Σ, I〉, where Σ is a signature and I is a class of Σ-interpretations that is closed
under variable reassignment. For the purpose of the paper, they only care about the theory of real
numbers. A Σ-formula is a first order logic with equalities formula with respect to an underlying
theory. It is T -satisfiable (T -unsatisfiable) if it is satisfied (unsatisfied) by some (any) interpretation.
They only consider quantifier free formulas. A theory solver is a tool to determine if a Σ-formula
is T -satisfiable or T -unsatisfiable. The DPLL(T ) architecture is a famous approach to determine
T -satisfiability of a Σ-formula. It is a combination of a theory solver and SAT solver. In that
architecture, the SAT solver operates on a boolean abstraction of the formula, then the theory solver
checks it if it can correspond to some interpretation in the theory. Splitting-on-demand framework
allows the theory solver to guide the search of the SAT solver.

2.3 Linear Real Arithmetic and Simplex

They consider the theory of real arithmetic denoted by TR as it is the most relevant in DNN verification.
The signature of this theory consists of all rational numbers and the symbols {+,−, ·,≤,≥} while
I is the set of all real numbers. They focus on linear formulas where the atoms are of the form∑

xi∈X cixi ./ d, where X is the set of variables, ./ ∈ {=,≤,≥} and ci, d are rational numbers. For
example, if the network is linear, i.e. the activation function is the identity mapping, the output is a
linear combination of the input. Then, any property of the output of the network can be written as a
Σ-formula in this theory. Simplex method is an efficient method to optimize some linear objective

2



function under linear constraints, i.e. a conjunction of linear inequalities called linear atoms. The first
part of the method which finds a feasible set that satisfies the constraints is the relevant one to the
work. Moreover, the second part which finds the optimal feasible solution is not used. It consists of
passing over some rules that update a data structure called configuration. For a given set of variables
X = {x1, . . . , xn}, in all but the last iteration, a configuration is a tuple 〈B, T, l, u, α〉 where B ⊆ X
is the set of basic variables, T is a matrix representing each basic variable as a linear combination
of nonbasic variables and is called tableau, l and u are vectors mapping each variable to its lower
and upper bound respectively, and α is a vector mapping each variable to a real number. In the last
iteration, the configuration is either SAT or UNSAT. The initial configuration is generated as follows:
for each linear atom, a basic variable is created and set in T to be equal to the left hand side of the
inequality. Then, the right hand side is set to be an upper bound, lower bound, or both for that basic
variable, depending on the operator. α is initialized to zero so that all the equations in T are satisfied
although their bounds in l and u may not.

A rule consists of a premise and a conclusion. If the premise is satisfied by a configuration, the
configuration is updated according to the conclusion. The rules of the Simplex algorithm are shown
in Figure 1 where slack+ and slack− are defined as follows:

Figure 1: Simplex Rules

The Pivot rules are used to switch a basic variable with a nonbasic variable. The Update rule is used
to update the value of a nonbasic variable. The Failure rule checks if there is no way to do a feasible
change anymore and declare the property unsatisfied if that is true. Finally, the Success rule checks if
the assignment vector α satisfies the bounds in l and u and if that is true, declares the property as
satisfied and the values of the variables in α are a witness of this satisfaction. All the rules preserves
the equalities in T while the lower and upper bounds in l and u may be violated temporarily and then
fixed by the Update rule. It is well known that there exist strategies where the algorithm will always
terminate. Besides, it is sound, i.e. when it results in SAT, then the formula is satisfied and the values
in α are a witness and when it outputs UNSAT then there is no assignment of the variables in real
numbers that makes the formula true. It is also complete, i.e. for every possible initial configuration
resulting from some formula, it will output SAT or UNSAT.

3 Reluplex (ReLU with Simplex)

The key contribution of the paper is covered in this section. It discusses the modifications done for the
Simplex method so that it can handle ReLUs. A brute force way to solve the problem of the existence
of ReLUs is to encode them as disjunctions of the active and inactive states. Then, feed the resulting
formula to an SMT solver. Theoretically, this will lead to an exponential time complexity in the
number of ReLUs in the network. This behavior was also seen in practice. So, instead, they defined
the binary predicate ReLU(x, y) which is true iff y = max(0, x). Then, they allowed the constraints

3



to include the application of ReLU to linear terms in addition to the linear inequalities. Now, each
ReLU unit is encoded as two variables, a backward facing variable xb and a forward facing variable
xf . Then, ReLU(xb, xf ) is added to the constraints.

Reluplex do similar steps as Simplex. Its configuration is the same as that of the Simplex with an
additional matrix R ⊆ X ×X in the tuple representing the ReLU connections. As Simplex, it allows
the variables two violate their bounds temporarily. It also allows them to violate their ReLU semantics
temporarily. They kept the rules Pivot1, Pivot2 and Update to handle the out-of-bound violations.
Moreover, they modified the Success rule to check if the semantics of the ReLUs are satisfied in
addition to the bounds and they called it ReluSuccess. They added the rules Updateb and Updatef to
allow a backward or forward facing variable to correct the semantics of the ReLU unit. They also
added the PivotForRelu rule to switch a basic variable appearing as a backward facing or forward
facing for some ReLU unit to a nonbasic variable so that the Update rules can be applied. Finally,
they added the ReluSplit rule that splits a ReLU as a disjunction of the active and inactive states.
Formally, the new rules are as follows:

Figure 2: Reluplex Rules

Their strategy was to fix all out-of-bounds violations first and then fix the ReLU relations. They
proved in Appendix B of the paper that their method is also sound and complete. The proofs consist
of three key lemmas. First Lemma proves that the assignment in α is always satisfying the equalities
in T . Second Lemma proves by induction that the leafs of the derivation trees are either SAT or
configurations that satisfy the bounds. The third Lemma proves that the ReLU property will be
preserved by all the rules over the derivation tree, and the upper and lower bounds can only get tighter
(because of the optimizations shown later) down the derivation tree. They use these three lemmas
to prove that it is a sound procedure. Its completeness follows from the completeness of Simplex
and the fact that the split rule can be applied till there is not anymore ReLUs in the property when
Simplex can be applied.

4 Efficient Implementation of Reluplex

They used several techniques to improve the performance of the algorithm.

4.1 Floating Point Arithmetic

They suggested that considering the inputs, weights and the outputs are floating point numbers rather
than real numbers reduce significantly the number pivot operations needed. Each of these operations
is expensive especially when requiring the division with very small numbers or multiplication of very
large ones. However, using floating point arithmetic reduces the precision of the results. Specifically,
the algorithm will not be anymore sound. For example, if it results in UNSAT, that means there is
no floating point number assignment of the variables that makes the formula true, but there may be
a real number assignment that makes it true. To tackle partially this issue, even without recovering
soundness, they keep track of the roundoff error. If it exceeds some predefined threshold, the steps
are undone, and since they know the initial tableau and the final one, a shorter path (fewer number of
pivot operations) is taken leading to the same result with a better accuracy.

4



4.2 Tighter Bound Derivations and Derived Bounds and Conflict Analysis

They added two rules to optimize the bounds on each variable. Although tightening the bounds takes
time, it has a huge benefit in eliminating ReLUs from the search process as a lot of them will have
bounds in either the active or the inactive state.

In case of contradictions in the bounds of a variable (the upper bound is smaller than the lower bound),
instead of undoing only one step, multiple steps are undone till there is no more contradiction. This is
a standard techniques used in SAT and SMT solvers.

4.3 Bound Under-Approximation

Instead of just tightening the bounds, sometimes under-approximating them might be helpful in
eliminating more ReLUs. This technique will not preserve soundness since a feasible solution may
still exist and be missed by the under-approximation of the bounds.

5 Case Study: The ACAS Xu System

They implemented their tool over the open source LP solver GLPK 1. As a case study, they considered
a prototype implementation of ACAS Xu consisting of 45 DNNs. The implementation of this system
as DNNs reduced the memory size needed from 2GB to 3MB. The inputs of the system are the
values of seven sensors of an unmanned aircraft representing its state and the state of another intruder
aircraft. The system uses the values of two of these sensors to choose which of the 45 DNNs to use.
Then, the chosen DNN is fed with the values of the other 5 sensors to compute 5 outputs representing
the advisories: Clear-of-conflict (COC), weak right, strong right, weak left and strong left. The output
with the least value is taken as the recommended advisory.

In their implementation, they used floating point arithmetic and a round-off-error threshold of 10−6.
Moreover, they fixed all the out-of-bounds violations before fixing the ReLU semantics. Also, they
did bound tightening after each pivot operation on the corresponding variable and the whole tableau
every few thousand operations. They split a ReLU if 5 operations were applied to fix it. Interestingly,
they observed that splitting upto 10% of the ReLUs led to the elimination of the rest.

To show the practical benefit of their heuristic, they tried to use state of the art SMT solvers to verify
simple properties of the form x < c where x is one of the outputs of 2 of the 45 DNNs chosen
arbitrarily. Most of them timed-out with a threshold of 4 hours while Reluplex was able to verify
them in few seconds as shown in the following table:

Figure 3: Comparison with SMT and LP solvers (in seconds)

Then, they considered more interesting properties and used Reluplex to verify them. These properties
concerns safety and convenience. For example, if the intruder is near, the advisory will be “strong
left” or “strong right” depending on from which side the intruder is approaching. Also, if the intruder
is far, the advisory will not be “strong”. The results are shown in the following table:

The Networks column represent the number of networks they tried to verify. The Result column
represent if the networks violated the property, i.e. if it is SAT it means that the network violated
the property and the solver generated a counter example, otherwise it did satisfy it. The time is in

1 www.gnu.org/software/glpk/

5

www.gnu.org/software/glpk/


Figure 4: Verifying properties of the ACAS Xu networks

seconds. The Stack and Splits columns represent the maximal number of nested case-splits averaged
over the number of networks tested and the total number of case-splits respectively.

Finally, they tried to check the robustness of the DNNs. Robustness and adversarial examples had got
a lot of attention in the past few years because of the security and safety concerns that they cause.
They use the following definition of local robustness: a network is δ-locally-robust at a data point x
if for every x′ such that ‖x− x′‖ ≤ δ, the output of the network is the same. They formulated this
as a property of the output of the network and tested the robustness of one of the networks over 5
arbitrary points and five different values of δ. The results are shown in the following table:

Figure 5: Local adversarial robustness tests. All times are in seconds.

As before, SAT means that Reluplex found an adversarial example that violates the robustness
property. At different points, the robustness of the network is different which is expected. They
suggested a brute force method to check the global robustness of the network, but it is not feasible in
practice even for normal sized networks.

6 Related Work

There has been few attempts to verify neural networks in the past few years. Probably the first one,
[4] used piecewise linear approximation of the sigmoid function and invoked SMT solvers, but they
were not able to verify properties for networks with more than 20 hidden units and 1 hidden layer.

In [1], the authors restricted the search over a region where each of the ReLUs is either in the active
or inactive state to check the robustness of a ReLU-based network at a certain point. However, it is
not clear what can be done using their method if there is no such region around the point.

In [2], the authors checked if a network have consistent labeling over a finite set of points around
some data point of interest. These points represent certain “common” perturbations of the input such
as camera scratches. However, there may be some points in the infinite domain around the point that
were not modeled that are mislabeled.

6



7 Discussion

The work presented is a first step towards the goal of making the formal verification of neural
networks practical. The problem is becoming more important as DNNs are becoming a natural
part of the control systems of autonomous vehicles and unmanned aircraft. The standard stochastic
guarantees in statistical learning theory are not enough when human lives may be in danger and the
recent papers about adversarial examples in neural nets are an example of what can go wrong.

However, from the few attempts to formally verify interesting properties of medium sized networks
clearly shows that aiming for absolute correctness of the neural nets is a hard goal to achieve. Even
in this work, the reported results are when using floating point arithmetic and for only ReLU-based
networks. As said by the authors, verifying it for real numbers would take much more time. Also,
current networks used in autonomous vehicles are not only ReLU-based but contain other types of
activation functions and are much larger in size. Moreover, the input of the network considered is
only 5-dimensional while current networks take as input a video feed which have a much larger
dimension. The first thing to be done is define what is the type of correctness is needed in practice.
For example, it may be acceptable if a neural network used as a controller of a car outputs a wrong
class for a few number of the inputs over a certain trajectory of inputs as long as the trajectory of
the car is still safe (avoiding an obstacle or stopping at a stop sign). For example, an experiment we
conducted in another class project, showed that adding adversarial noise to a stop sign did not cause
the network to miss classify all the frames, only few of them. That for example, would not cause
the car to not stop at the stop sign. This is usually the case in hybrid systems verification, where
people are concerned about the safety of the whole trajectory rather than individual decisions. It is
interesting to look at the methods and approaches in that area to verify the safety of the system as a
whole instead of the safety of the neural net alone.

7



References
[1] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. Measuring

neural net robustness with constraints. arXiv preprint arXiv:1605.07262, 2016.

[2] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks.
CoRR, abs/1610.06940, 2016.

[3] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient
SMT solver for verifying deep neural networks. CoRR, abs/1702.01135, 2017.

[4] L. Pulina and A. Tacchella. Challenging smt solvers to verify neural networks. AI Commun.,
25(2):117–135, Apr. 2012.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

8


	Introduction
	Background
	Neural Networks
	Satisfiability Modulo Theories (SMT)
	Linear Real Arithmetic and Simplex

	Reluplex (ReLU with Simplex)
	Efficient Implementation of Reluplex
	Floating Point Arithmetic
	Tighter Bound Derivations and Derived Bounds and Conflict Analysis
	Bound Under-Approximation

	Case Study: The ACAS Xu System
	Related Work
	Discussion

